IUPAC > Gold Book
icon

IndexesDownload


Quantities

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
quantitysymbolreferenced inequation
term, T Math - mathterm, T T
thermal conductance, GMath - maththermal conductance, GG
thermal conductivity, λ Math - maththermal conductivity, λ λ
thermal conductivity, λ J q = − λ ∇ T
thermal resistance, RMath - maththermal resistance, RR
thermodynamic temperature, T Math - applyabsolute activity, λR T
absolute activity, λT
absolute activity, λλ = e μ R T
activation energy (Arrhenius activation energy)E a = R T 2 d ( ln k ) d T
activity coefficient, f, γR T ln ( x B f B ) = μ B cd T P x − μ B * cd T p
activity coefficient, f, γR T ln ( m B γ B m ⊖ ) = μ B − μ B − R T ln ( m B m ⊖ ) ∞
activity (relative activity), aa = e μ − μ 0 R T
Arrhenius equationk = A e − E a R T
biradicalk B T
biradicalT
carbonizationT ∼ 1200 K
carbonizationT ∼ 1600 K
cathodic transfer coefficient, α cα c ν = − R T n F ( ∂ ( ln ( | I c | ) ) ∂ E ) T , p , c i , ...
chemical equilibriumΔ G r = Δ G r o + R T ln K = 0
chemical equilibriumΔ G r o = − R T ln K
chemical potential, μ Bμ B = ( ∂ G ∂ n B ) T , p , n C ≠ B
collision theory8 k B T π m
collision theoryZ AA = 2 N A 2 σ 2 π k B T m
collision theoryZ AB = N A N B σ 2 π k B T μ
collision theoryz AA or z AB = L σ 2 8 π k B T μ
compensation effectT Δ ‡ S
compensation effectΔ ‡ G = Δ ‡ H − T Δ ‡ S
compensation in catalysisk = A e − E R T
conditional (formal) potentialE cell = E c 0 ' − R T n F ∑ i ν i ln c i
differential capacitanceC = ( ∂ Q ∂ E ) T , p , μ i , ...
differential molar energy of adsorptionU i σ = ( ∂ U σ ∂ n i s ) T , m , n j σ = ( ∂ U ∂ n i σ ) T , m , V g , p i , n j σ
differential molar energy of adsorptionU i s = ( ∂ U ∂ n i s ) T , m , V g , p i , n j σ = ( ∂ U ∂ n i s ) T , m , V g , V s , p i , n j s
differential molar energy of adsorption( ∂ U ∂ n i g ) T , V , n i g
diffusion potential∇ Φ = R T ∑ D i z i ∇ c i F ∑ s i 2 D i c i
electrocapillary equations d T − τ d p + d γ + σ α d E + ∑ Γ j d μ j = 0
electrode reaction rate constantsk c = k ox e α a ( E − E c 0' ) n F ν R T = k red e − α c ( E − E c 0' ) n F ν R T
energy of activation of an electrode reactionU ‡ = − R T ( ∂ ( ln I 0 ) ∂ T −1 ) p , c j , ...
energy of activation of an electrode reactionU ‡ η = − R ( ∂ ( ln ( | I | ) ) ∂ T −1 ) p , η , c j , ...
enthalpy of activation, Δ ‡ H ° k = k B T h e Δ ‡ S ° R e − Δ ‡ H ° R T
Esin and Markov coefficient( ∂ E ∂ μ ) T , p , σ = − ( ∂ Γ ∂ σ ) T , p , μ
Esin and Markov coefficientT
Gibbs energy of activation (standard free energy of activation), Δ ‡ G o Δ ‡ G = R T ln ( k B h ) − ln ( k T )
Gibbs film elasticityE = A ( ∂ σ ∂ A ) T , p , n i
graphitizationT > 2500 K
heat capacity, CC V = ( ∂ U ∂ T ) V
heat capacity, CC p = ( ∂ H ∂ T ) p
heat capacity of activation, Δ ‡ C p oΔ ‡ C p = ( ∂ Δ ‡ H ∂ T ) p = T ( ∂ Δ ‡ S ∂ T ) p
heat capacity of activation, Δ ‡ C p oln k = a T + b + c ln T + d T
heat capacity of activation, Δ ‡ C p oΔ ‡ C p = ( c − 1 ) R + 2 d ( R T )
ideal gasp V = n R T
immobile adsorptionk T
inversion height in atmospheric chemistryd T d z
ion pairq = 8.36 × 10 6 z + z − ɛ r T pm
isokinetic relationshipT = β
isosteric enthalpy of adsorptionH i s = ( ∂ H s ∂ n i s ) T , p , m , n j s
isosteric enthalpy of adsorption( ∂ H g ∂ n i g ) T , p , n i g
Krafft point1 T
Lippman's equation( ∂ γ ∂ E A ) T , p , μ i ≠ μ = − Q A
Marcus equation (for electron transfer)k ET = κ ET k T h exp ( − Δ G ‡ R T )
mean activity of an electrolyte in solutiona ± = e ( μ B − μ B ⦵ ) ν R T
mean free path, λ λ B = 3 k T m m B
medium effectR T ln γ S 1 S 2 B = μ B o , S 2 − μ B o , S 1
metamagnetic transitionT > T t
metastability of a phasek T
miscibility( ∂ 2 Δ mix G ∂ ϕ 2 ) T , p > 0
modified Arrhenius equationT n
modified Arrhenius equationk = B T n exp − E a R T
osmotic coefficient, ϕ ϕ = μ A * − μ A R T M A ∑ i m i
osmotic coefficient, ϕ ϕ = μ A * − μ A R T ln x A
osmotic pressure, Π Π = − R T V A ln a A
osmotic pressure, Π Π = c B R T = ρ B R T M B
pH− lg a H + γ Cl − = E − E ⦵ R T ln 10 / F + lg m Cl − / m ⦵
pre-exponential factor, A k = A exp ( − E a / R T )
Rehm–Weller equationk q = k d 1 + k d K d Z exp ( Δ G ‡ R T ) + exp ( Δ ET G o R T )
retention volumes in chromatographyV g = 273 V N w L T
rotational correlation time, τ c or θD r = R T / 6 V η
standard chemical potentialμ B o ( T )
standard electromotive forceE ° = − Δ r G ° n F = R T n F ln K °
standard equilibrium constant, K °, K K ° = e − Δ r G ° / R T
static stability− d T d z < Γ
strong collisionk B T
surface chemical potentialμ i σ = ( ∂ A σ ∂ n i σ ) T , A S , n j σ = ( ∂ G σ ∂ n i σ ) T , p , γ , n j σ
surface chemical potentialμ i S = ( ∂ A S ∂ n i S ) T , V S , A S , n j S = ( ∂ G S ∂ n i S ) T , p , γ , n j S
surface excess Gibbs energyG σ = H σ − T S σ = A σ − γ A s
surface excess Helmholtz energyA σ = U σ − T S σ
temperature lapse rate in atmospheric chemistryd T d z
thermal conductivity, λ J q = − λ ∇ T
thickness of electrical double layer1 κ = ɛ r ɛ 0 R T F 2 ∑ i c i z i 2
thickness of electrical double layer1 κ = ɛ r R T 4 π F 2 ∑ i c i z i 2
transfer activity coefficient, γ t Δ t G ° = ν R T ln γ t
transition state theoryk = k B T h K ‡
transition state theoryk = k B T h exp ( Δ ‡ S ° R ) exp ( − Δ ‡ H ° R T )
transition state theoryk = k B T h exp ( − Δ ‡ G ° R T )
virial coefficientsp V m = R T ( 1 + B V m + C V m 2 + ... )
volume of activation, Δ ‡ V Δ ‡ V = − R T ( ∂ ( ln k ) ∂ p ) T
threshold energy, E 0 Math - maththreshold energy, E 0 E 0
time, t Math - bvarabsorbed (spectral) photon flux densityd C d t
absorbed (spectral) photon flux densityd c d t
activity, A of a radioactive materialA = − d N d t
Avrami equation1 − φ c = e − K t n
Avrami equationt
chemical flux, φd C d t = ∑ φ C − ∑ φ − C
chemical flux, φ− d A d t = φ 1
chemical flux, φ− d A d t = d P d t = 0
compartmental analysisC = A e − α t + B e − β t ...
compartmental analysist
dilution rate, D in biotechnologyd V d t
double-layer currenti DL = d ( σ A ) d t
double-layer currentt
emission anisotropyr t
emission anisotropyr ̄ = ∫ 0 ∞ r t I t ⁢ d t ∫ 0 ∞ I t ⁢ d t
emission anisotropyr t
emission anisotropyI t
emission anisotropyt
exponential decayA = A 0 e − λ t
fractional change of a quantityt
fractional selectivity in catalysisξ i = d ξ i d t
growth rate in biotechnologyd ( ln X ) d t
lifetime, τ c t = τ = c t = 0 e
lifetime, τ c t = τ 1/2 = c t = 0 2
magic angleI t β ∝ N t 1 + ( 3 cos 2 ⁡ β − 1 ) R t
magic angleR t
magic angleN t
magic angleI t β = 54.7 ° ∝ N t
mass-transfer-controlled electrolyte rate constants B = − 1 c B d c B d t
mass-transfer-controlled electrolyte rate constantd c B d t
photon exposure, H pH p = ∫ t E p ⁢ d t
photon exposure, H pH p = E p t
photon flow, Φ p d N d t
photon flow, Φ p Φ p = N t
photon fluence, H p , o, F p , oH p , o = F p , o = d N p / d S = ∫ t E p , o ⁢ d t
photon fluence, H p , o, F p , oH p , o = F p , o = E p , o t
photon fluence rate, E p , oE p , o = d N p / d t d S = d H p , o / d t
photon fluence rate, E p , oE p , o = N p / t S
photon flux, q p, Φ pq p = d N p / d t
quantum yield, ΦΦ λ = d x / d t q n , p 0 1 − 10 − A λ
quantum yield, Φd x / d t
radiant energy, Q Q = P t
radiant exposure, HH = d Q / d S = ∫ t E ⁢ d t
radiant exposure, HH = E t
radiant power, PP = d Q / d t
radiant power, PP = Q / t
rated x d t
rate of change of a quantityd Q d t
rate of change of a quantityd m d t
rate of change of a quantityd n d t
rate of change ratiod Q 1 / d t d Q 2 / d t
rate of change ratiod m 1 / d t d m 2 / d t
rate of change ratiod n 1 / d t d n 2 / d t
rate of consumption, v n , B or v c , B v n B = − d n B d t
rate of consumption, v n , B or v c , B v c B = − 1 V d n B d t
rate of consumption, v n , B or v c , B v c B = − d [B] d t
rate of consumption, v n , B or v c , B v c B = − d [B] d t − [B] V d V d t
rate of conversion, ξ . ξ . = d ξ d t
rate of conversion, ξ . ξ . = d ξ d t = 1 ν i d n i d t
rate of formation, v n , y or v c , y v n Y = d n Y d t
rate of formation, v n , y or v c , y v c Y = 1 V d n Y d t
rate of formation, v n , y or v c , y v c Y = 1 V d n Y d t = d Y d t
rate of formation, v n , y or v c , y v c Y = d Y d t + Y V d V d t
rate of reaction, vv = − 1 a d [A] d t = − 1 b d [B] d t = 1 p d [P] d t = 1 q d [Q] d t
rate of reaction, vξ . = d ξ d t
rate of reaction, vξ . = − 1 a d n A d t = − 1 b d n B d t = 1 p d n P d t = 1 q d n Q d t
rate of reaction, v− d [A] d t
rate of reaction, vd [P] d t
residual emission anisotropyr t = ( r 0 − r ∞ ) exp ( − t τ c ) + r ∞
rotational correlation time, τ c or θr t = r 0 exp ( − t τ c )
rotational correlation time, τ c or θr t
rotational frequency, f rot in centrifugationf rot = d N d t
steady state (stationary state)− d [X] d t = d [A] d t + d [D] d t
steady state (stationary state)d [X] d t = 0
steady state (stationary state)d [D] d t = − d [A] d t = k 1 k 2 [A] [C] k −1 + k 2 [C]
steady state (stationary state)d [D] d t = k 2 [X] [C]
surface shear viscosityζ s = Δ γ d ( ln A ) d t
time constant, τ c of a detector1 − exp ( − t / τ c )
time constant, τ c of a detectort = τ c
transferd Q d t
transferd m B d t
transferd n B d t
time constant, τ c of a detectorMath - mathresponse time, τ R of a detectorτ c
Math - applytime constant, τ c of a detector1 − exp ( − t / τ c )
time constant, τ c of a detectort = τ c
time, t of centrifugationMath - mathtime, t of centrifugationt
torque, TMath - applyelectric dipole moment, pT = p × E
torque, TT
total consumption time , t tot in flame emission and absorption spectrometryMath - mathtotal consumption time , t tot in flame emission and absorption spectrometryt tot
total velocity of the analyte, ν tot in capillary electrophoresisMath - mathtotal velocity of the analyte, ν tot in capillary electrophoresisν tot
total velocity of the analyte, ν tot in capillary electrophoresisν tot = ν ep + ν eo
transit time, t ts in flame emission and absorption spectrometryMath - mathtransit time, t ts in flame emission and absorption spectrometryt ts
transition wavenumber, ν ˜ Math - mathtransition wavenumber, ν ˜ ν ˜
transmittance, T, τMath - mathtransmittance, T, τT
transmittance, T, τT = P λ P λ 0
Math - mathtransmittance, T, ττ
transport number, t Math - mathtransport number, t t
travel time, t tv in flame emission and absorption spectrometryMath - mathtravel time, t tv in flame emission and absorption spectrometryt tv
turbidity, τ in light scatteringMath - mathturbidity, τ in light scatteringτ