IUPAC > Gold Book
icon

IndexesDownload


Quantities

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
quantitysymbolreferenced inequation
wavelength, λ Math - mfencedabsorbed (spectral) photon flux densityq p , λ 0 1 − 10 − A λ V
absorbed (spectral) photon flux densityq n , p , λ 0 1 − 10 − A λ V
absorbed (spectral) photon flux densityA λ
absorbed (spectral) photon flux densityλ
absorbed (spectral) radiant power densityP λ 0 1 − 10 − A λ V
absorption spectrumλ
absorption spectrum1 λ
actinic flux S λE λ = ∫ θ ∫ φ L λ θ φ cos ⁡ θ sin ⁡ θ ⁢ d θ ⁢ d φ
actinic flux S λh c λ
brightness of a laser dyeɛ λ
brightness of a laser dyeΦ f ɛ λ
conversion spectrumλ
Dimroth–Reichardt E T parameterE T = 2.859 × 10 −3 ν = 2.859 × 10 4 λ −1
Dimroth–Reichardt E T parameterλ
dispersion (for spectroscopic instruments)Dispersion of a material = d n d λ
dispersion (for spectroscopic instruments)λ
dispersion (for spectroscopic instruments)angular dispersion = d Φ d λ
dispersion (for spectroscopic instruments)linear dispersion = d x d λ
dispersion (for spectroscopic instruments)d λ d x
excimer lampλ = 354 nm
excimer lampλ = 126 nm
isosbestic pointA λ l −1 = ∑ i = 1 n ɛ i λ c i
isosbestic pointA λ
isosbestic pointλ
Mie scatteringr ≪ λ
Mie scatteringr ≫ λ
Mie scatteringr ≈ λ
molar absorption coefficient, ɛɛ λ = 1 c l lg ( P λ 0 P λ ) = A λ c l
molar absorption coefficient, ɛP λ 0
molar absorption coefficient, ɛP λ
molar absorption coefficient, ɛɛ λ
quantum yield, ΦΦ λ = number of events number of photons absorbed
quantum yield, ΦΦ λ = amount of reactant consumed or product formed amount of photons absorbed
quantum yield, ΦΦ λ = d x / d t q n , p 0 1 − 10 − A λ
quantum yield, ΦA λ
radiance, LL = ∫ λ L λ ⁢ d λ
radiant energy, Q Q = ∫ Q λ ⁢ d λ
radiant exitance, MM = ∫ λ M λ ⁢ d λ
radiant intensity, II = ∫ λ I λ ⁢ d λ
radiative energy transfera = 1 Φ D 0 ∫ λ I λ D λ 1 − 10 − ɛ A λ c A l ⁢ d λ
radiative energy transferI λ D λ
radiative energy transferɛ A λ
radiative energy transferΦ D 0 = ∫ λ I λ D λ ⁢ d λ
radiative energy transfera = 2.3 Φ D 0 c A l ∫ λ I λ D λ ɛ A λ ⁢ d λ
radiometryh c λ
Rayleigh scatteringλ −4
reflectance, ρρ λ = P λ refl P λ 0
reflectance, ρρ λ = ( n 1 − n 2 ) 2 ( n 1 + n 2 ) 2
solar conversion efficiencyλ = 0
solar conversion efficiencyλ = ∞
spectral sensitivity, S λS λ
spectral sensitivity, S λS ac λ = Φ λ ɛ λ obs = sensitivity or actinometric factor
spectral sensitivity, S λΦ λ
spectral sensitivity, S λλ obs
Z-valueZ = 2.859 × 10 4 λ
Math - mathoptical parametric oscillatorλ p
optical parametric oscillator2 × λ p
optical parametric oscillatorλ p = 355 nm
Math - mathoptical parametric oscillatorλ s
Math - mathoptical parametric oscillatorλ I
Math - applyoptical parametric oscillatorλ i ≈ 3.15 μm
optical parametric oscillatorλ i ≈ 870 nm
wavenumber, σ, ν ˜ Math - mathconversion spectrumσ
wavenumber, σ, ν ˜ σ
Math - applyDimroth–Reichardt E T parameterE T = 2.859 × 10 −3 ν = 2.859 × 10 4 λ −1
Dimroth–Reichardt E T parameterν
Math - mathspectral fluence rate, E λ , oν ˜
weight, GMath - mathweight, GG
weight, GG = m g
work, w, WMath - mathinternal energy, Uw
internal energy, UΔ U = q + w
work, w, Ww = ∫ F · d r
Math - mathwork, w, WW