atomic charge

The charge attributed to an atom A within a molecule defined as $\zeta = Z_{\rm A} - q_{\rm A}$, where $Z_{\rm A}$ is the atomic number of A and $q_{\rm A}$ is the electron density assigned to A. The method of calculation of $q_{\rm A}$ depends on the choice of the scheme of partitioning electron density. In the framework of the Mulliken population analysis $q_{\rm A}$ is associated with the so-called gross atomic population: $q_{\rm A} = \sum q_{\rm \mu}$, where $q_{\rm \mu}$ is a gross population for an orbital μ in the basis set employed defined according to

$$q_{\mu} = P_{\mu\mu} + \sum_{\nu \neq \mu} P_{\mu\nu} S_{\mu\nu}$$

where $P_{\mu\nu}$ and $S_{\mu\nu}$ are the elements of density matrix and overlap matrix, respectively (see overlap integral). In the Hückel molecular orbital theory (where $S_{\mu\nu}=\delta_{\mu\nu}$), $q_{\mu}=n_{\mu}P_{\mu\mu}$, where n_{μ} is the number of electrons in the MO μ .

Source:

PAC, 1999, 71, 1919 (Glossary of terms used in theoretical organic chemistry) on page 1924