catalytic current

The faradaic current that is obtained with a solution containing two substances \(B \) and \(A \) may exceed the sum of the faradaic currents that would be obtained with \(B \) and \(A \) separately, but at the same concentrations and under the same experimental conditions. In either of the two following situations the increase is termed a catalytic current. \(B \) is reduced or oxidized at the electrode-solution interface to give a product \(B' \) that then reduces or oxidizes \(A \) chemically. The reaction of \(B \) with \(A \) may yield either \(B \) or an intermediate in the overall half-reaction by which \(B' \) was obtained from \(B \). In this situation the increase of current that results from the addition of \(A \) to a solution of \(B \) may be termed a regeneration current. The presence at the electrode-solution interface of one substance, which may be either \(A \) or the product \(A' \) of its reduction or oxidation, decreases the over-potential for the reduction or oxidation of \(B \). In either case the magnitude of the catalytic current depends on the applied potential. If the current observed with a mixture of \(A \) and \(B \) is smaller than the sum of the separate currents, the term non-additive current should be used.

Source:
PAC, 1985, 57, 1491 (Recommended terms, symbols, and definitions for electroanalytical chemistry (Recommendations 1985)) on page 1494