distribution isotherm

in chromatography

The equilibrium relation between the concentration of a sample component in the stationary phase $c_{\rm S}$, and in the mobile phase $c_{\rm M}$, expressed as a function $c_{\rm S} = f(c_{\rm M})$.

Note:

The relation can be influenced also by concentrations of other sample components. $c_{\rm S}$ and $c_{\rm M}$ are usually expressed per unit volume of the phase; $c_{\rm S}$ may also be expressed per mass of the dry solid phase or per unit surface area.

In some versions of chromatography, a distribution isotherm can be seen as a partition isotherm, an adsorption isotherm, or a combination of these, depending on the mechanism of separation.

Source:

PAC, 1996, 68, 1591 (Nomenclature for non-linear chromatography (IUPAC Recommendations 1996)) on page 1592

This definition supersedes an earlier definition of distribution isotherm in chromatography.