electrode current density, j

If the charging current is negligible, in the case of a single electrode reaction, the electrode current density (c.d.) of the electric current flowing through the electrode is related to the flux density of a species \mathbf{B} by the equation:

$$j = n \nu_{\rm B}^{-1} F \left(N_{\rm B} \right)_e$$

where $(N_B)_e$ is the normal component of the vector N_B at the electrode-solution interface, *n* is the charge number of the electrode reaction and ν_B is the stoichiometric number of species **B**. The ratio $\frac{n}{\nu_B}$ is to be taken as positive if the species **B** is consumed in a cathodic reaction or produced in an anodic reaction. Otherwise it is to be taken as negative. With the convention that the normal distance vector points into the electrolytic solution, a cathodic current is then negative, an anodic current positive.

Source:

PAC, 1981, 53, 1827 (Nomenclature for transport phenomena in electrolytic systems) on page 1835