**Esin and Markov coefficient**

The left-hand side of one of the various cross-differential relationships that can be obtained from the Gibbs adsorption equation when only one chemical potential ($\mu$) is considered as variable, viz.

$$\left(\frac{\partial E}{\partial \mu}\right)_{T,p,\sigma} = -\left(\frac{\partial \Gamma}{\partial \sigma}\right)_{T,p,\mu}$$

where $E$ is the potential difference, $T$ is the temperature, $p$ is the pressure, $\Gamma$ is the surface excess and $\sigma$ is the charge density.

**Source:**
PAC, 1986, 58, 437 (*Interphases in systems of conducting phases (Recommendations 1985)*) on page 446