fluence rate, E_o

Also contains definitions of: radiant energy fluence rate, spherical irradiance

Total radiant power, P, incident from all directions onto a small sphere divided by the cross-sectional area of that sphere. SI unit is $W \, m^{-2}$.

Notes:
1. Mathematical definition: $E_o = \frac{dP}{dS} = \frac{dH_o}{dr}$. If the radiant power is constant over the area S, $E_o = \frac{P}{S}$. Equivalent definition: $E_o = \int L d\Omega$, with Ω the solid angle of each beam passing through the given point on the surface and L the radiance of the beam at that point.
2. Fluence rate is identical to spherical irradiance and reduces to irradiance, E, for a parallel and perpendicularly incident beam not scattered or reflected by the target or its surroundings.

Source: