optical parametric oscillator

Acronym: OPO

Light source similar to a laser, but based on 'non-linear optical gain' from parametric amplification rather than on stimulated emission.

Notes:
1. The device is a powerful solid-state source of broadly tunable coherent radiation. It consists of a crystal, usually BBO (BaB$_2$O$_4$), located inside an optical resonator and pumped by a very intense laser beam (typically provided by a pulsed neodymium laser or a diode laser). The pump beam (wavelength λ_p, frequency ν_p) is partially converted into two coherent beams, the signal and the idler, with wavelengths (λ_s, λ_i) and frequencies (ν_s, ν_i) such that $\nu_s + \nu_i = \nu_p$. By simultaneous rotation of the crystal and adjustment of the optical resonator, the wavelength of the signal beam is continuously tunable, theoretically from λ_p to $2 \times \lambda_p$ and practically over a slightly more reduced range.

2. For example, for $\lambda_p = 355$ nm (3rd harmonic of a Nd:YAG laser), ν_s can be tuned from 400 nm (with $\lambda_i \approx 3.15$ μm) up to 600 nm (with $\lambda_i \approx 870$ nm).

3. This 'splitting of one photon into two photons' is the reverse of the 'sum frequency mixing' used, for instance, to generate the 3rd harmonic of a laser emission by mixing in a convenient crystal the fundamental and the frequency doubled beams (a way to get the 3rd harmonic much more efficiently than by pure frequency tripling as described under harmonic frequency generation).

Source:
PAC, 2007, 79, 293 (Glossary of terms used in photochemistry, 3rd edition (IUPAC Recommendations 2006)) on page 378