photon fluence rate, $E_{p,o}$

Rate of photon fluence. Total number of photons (N_p) incident from <u>all directions</u> on a small sphere divided by the cross-sectional area of the sphere and per time interval. SI unit is m^{-2} s⁻¹. Same as photon spherical irradiance. Notes:

- 1. Mathematical definition: $E_{\rm p,o} = {\rm d}N_{\rm p}/({\rm d}t\,{\rm d}S) = {\rm d}H_{\rm p,o}/{\rm d}t$. If $E_{\rm p,o}$ is constant over the time interval and the surface, $E_{\rm p,o} = N_{\rm p}/t\,S$ Equivalent definition: $E_{\rm p,o} = \int_{4\pi} L_{\rm p} {\rm d}\Omega$ with $L_{\rm p}$ the photon radiance and Ω the solid angle of the beams passing through the given point on the surface.
- 2. It reduces to photon irradiance E_p for a parallel and normally incident beam <u>not</u> scattered or reflected by the target or its surroundings.
- 3. This quantity can be used on a chemical amount basis by dividing $E_{p,o}$ by the Avogadro constant, the symbol then being $E_{n,p,o}$, the name 'photon fluence rate, amount basis', SI unit is mol m⁻² s⁻¹; common unit is einstein m⁻² s⁻¹.

Source:

PAC, 2007, 79, 293 (Glossary of terms used in photochemistry, 3rd edition (IUPAC Recommendations 2006)) on page 395