branching plane

At a conical intersection point, the plane spanned by the gradient difference vector (x_1) and the gradient of the interstate coupling vector (x_2) :

$$x_{1} = \frac{\partial (E_{2} - E_{1})}{\partial Q} q$$
$$x_{2} = \langle C_{1}^{t} \left(\frac{\partial H}{\partial Q} \right) C_{2} \rangle$$

q

where C_1 and C_2 are the configuration interaction eigenvectors (i.e., the excited and ground-state adiabatic wavefunctions) in a conical intersection problem, H is the conical intersection Hamiltonian, Q represents the nuclear configuration vector of the system, and thus q is a unit vector in the direction of vector q. E_1 and E_2 are the energies of the lower and upper states, respectively.

Note:

The branching plane is also referred to as the g-h plane. Inspection of x_1 and x_2 provides information on the geometrical deformation imposed on an excited state molecular entity immediately after decay at a conical intersection. Consequently, these vectors provide information on the ground-state species that will be formed after the decay.

Source:

PAC, 2007, 79, 293 (Glossary of terms used in photochemistry, 3rd edition (IUPAC Recommendations 2006)) on page 309