Drude-Nernst equation (for electrostriction)

Equation describing the contraction $(\Delta V_{\rm el})$ taking place in a dielectric medium of relative static permittivity $\varepsilon_{\rm r}$ (formerly called dielectric constant) upon introduction of an ion of charge number z and radius r:

$$\Delta V_{\rm el} = -\frac{(z \, e)^2}{2 \, r \, \varepsilon_{\rm r}} \frac{\partial (\ln \varepsilon_{\rm r})}{\partial p}$$

with e the elementary charge.

Note:

Inasmuch as the derivative of $\ln \varepsilon_r$ with respect to pressure, $\frac{\partial (\ln \varepsilon_r)}{\partial p}$, is not known for all media, there are approximations to evaluate this term as a function of ε_r and of the isothermal compressibility of the medium, κ_T .

Source:

PAC, 2007, 79, 293 (Glossary of terms used in photochemistry, 3rd edition (IUPAC Recommendations 2006)) on page 327