Gibbs adsorption

The surface excess amount or Gibbs adsorption of component i, n_i^{σ} , which may be positive or negative, is defined as the excess of the amount of this component actually present in the system over that present in a reference system of the same volume as the real system and in which the bulk concentrations in the two phases remain uniform up to the Gibbs dividing surface. That is

$$n_i^{\sigma} = n_i - V^{\alpha} c_i^{\alpha} - V^{\beta} c_i^{\beta}$$

where n_i is the total amount of the component i in the system, c_i^{α} and c_i^{β} are the concentrations in the two bulk phases α and β , and V^{α} and V^{β} are the volumes of the two phases defined by the Gibbs surface.

Source:

PAC, 1972, 31, 577 (Manual of Symbols and Terminology for Physicochemical Quantities and Units, Appendix II: Definitions, Terminology and Symbols in Colloid and Surface Chemistry) on page 588