mean activity of an electrolyte in solution

Defined by the equation:

$$a_{+} = e^{(\mu_{\rm B} - \mu_{\rm B}^{\Theta}) \nu R T}$$

where $\mu_{\rm B}$ is the chemical potential of the solute B in a solution containing B and other species. The nature of B must be clearly stated: it is taken as a group of ions of two kinds carrying an equal number of positive and negative charges, e.g. Na⁺ + NO₃⁻ or Ba²⁺ + 2Cl⁻ or 2Al³⁺ + 3SO₄²⁻ . ν is the total number of ions making up the group i.e. 2, 3 and 5 respectively in the above examples. $\mu_{\rm B}^{\ominus}$ is the chemical potential of B in its standard state, usually the hypothetical ideal solution of concentration 1 mol kg⁻¹ and at the same temperature and pressure as the solution under consideration.

See also: activity

Source:

PAC, 1974, 37, 499 (Electrochemical nomenclature) on page 510