Also contains definitions of: avalanche photodiode, PIN (p-intrinsic-n) diode, Schottky-barrier photodiode
A two-electrode, radiation-sensitive junction formed in a semiconductive material. A junction is formed by two successive regions of a semiconductive material having, respectively, an excess of electrons (n-type) or holes (p-type). A bias potential applied to the detector creates a region at the interface that is depleted of majority carriers. Each incident photon produces electron-hole pairs in the depletion region resulting in a measurable signal current. The photodiode can be operated either with zero bias in the photovoltaic mode where the photodiode is actually generating the electric potential supplied to the load. In a biased mode, the photoconductive mode, the reverse current is proportional to the irradiation. A Schottky-barrier photodiode is constructed by deposition of a metal film on a semiconductor surface in such a way that no interface layer is present. The barrier thickness depends on the impurity dopant concentration in the semiconductor layer. The incident radiation generates electon-hole pairs within the depletion region of the barrier where they are collected efficiently and rapidly by the built-in field. A PIN (p-intrinsic-n) diode is a planar diffused diode consisting of a single crystal having an intrinsic (undoped or compensated) region sandwiched between p- and n-type regions. A bias potential applied across the detector depletes the intrinsic region of charge carriers, constituting the radiation-sensitive detector volume. The number of electron-hole pairs produced is dependent on the energy of the incident photons. An avalanche photodiode is a photodiode in which the photogenerated electron-hole pairs are accelerated by a bias potential near to breakdown potential so that further electron-hole pairs are formed leading to saturation of the photocurrent. This operational mode for photon counting is the so-called Geiger mode, similar to that of the gas filled Geiger counter. Avalanche photodiodes can also be operated in the proportional mode.
PAC, 1995, 67, 1745. 'Nomenclature, symbols, units and their usage in spectrochemical analysis-XI. Detection of radiation (IUPAC Recommendations 1995)' on page 1755 (