Rehm–Weller equation

Empirical correlation found between the observed second-order rate constant, k_q, for an intermolecular electron-transfer reaction and the Gibbs energy of the photoinduced electron transfer process within the encounter complex ($\Delta_{ET}G^o$):

$$k_q = \frac{k_d}{1 + \frac{k_d}{K_d Z} \left[\exp \left(\frac{\Delta G_l^f}{RT} \right) + \exp \left(\frac{\Delta_{ET}G^o}{RT} \right) \right]}$$

with k_d and k_{-d} the rate constant for the formation and separation, respectively, of the encounter (precursor) complex, $K_d = k_d/k_{-d}$, Z the universal collision frequency factor, R the gas constant, T the absolute temperature and ΔG^2 the activation Gibbs energy of the forward electron transfer reaction.

Note:
In the original formulation of this equation the value $\frac{k_d}{K_d Z} = 0.25$ in acetonitrile was used.

Source:
PAC, 2007, 79, 293 (Glossary of terms used in photochemistry, 3rd edition (IUPAC Recommendations 2006)) on page 413