thickness of electrical double layer

The length characterizing the decrease with distance of the potential in the double layer = characteristic Debye length in the corresponding electrolyte solution = κ^{-1}:

\[
\frac{1}{\kappa} = \sqrt{\frac{\varepsilon_r \varepsilon_0 R T}{F^2 \sum_i c_i z_i^2}}
\]

(rationalized four-quantity system)

\[
\frac{1}{\kappa} = \sqrt{\frac{\varepsilon_r R T}{4 \pi F^2 \sum_i c_i z_i^2}}
\]

(three-quantity electrostatic system)

where $\varepsilon = $ static permittivity = $\varepsilon_r \varepsilon_0$, ε_r = relative static permittivity of solution; ε_0 = permittivity of vacuum, R = gas constant, T = thermodynamic temperature, F = Faraday constant, c_i = concentration of species i, z_i = ionic charge on species i.

Source: