https://doi.org/10.1351/goldbook.S05917
For solutions in @[email protected] solvents, the universal @[email protected] for which, under standard conditions, the @[email protected] (H+ / H2) is zero at all temperatures. The @[email protected] of the hydrogen electrode under standard conditions can be expressed in terms of thermodynamic quantities by applying a suitable Born–Haber cycle, thus: \[E^{\,\unicode{x26ac}}\left(\text{H}^{+}/\text{H}_{2}\right)\left(\text{abs}\right)=\Delta _{\text{at}}G^{\,\unicode{x26ac}}+\Delta _{\text{ion}}G^{\,\unicode{x26ac}}+\frac{\alpha _{\text{H}^{+}}^{\text{o,S}}}{F}\] where \(\Delta _{\text{at}}G^{\,\unicode{x26ac}}\) and \(\Delta _{\text{ion}}G^{\,\unicode{x26ac}}\) are the atomization and @[email protected] Gibbs energies of H2, \(\alpha _{\text{H}^{+}}^{\text{o,S}}\) is the real potential of H2 in solvent S and \(F\) is the @[email protected] The recommended @[email protected] of the hydrogen electrode is: \[E^{\,\unicode{x26ac}}\left(\text{H}^{+}/\text{H}_{2}\right)^{\text{H}_{2}\text{O}}\left(\text{abs}\right)=(4.44\pm 0.02)\ \text{V}\quad \text{at}\quad 298.15\ \text{K}\]